Cytokine storms may affect the severity of COVID-19 cases by lowering T cell counts, according to a new study published in Frontiers in Immunology. Researchers studying coronavirus cases in China found that sick patients had a significantly low number of T cells, a type of white blood cell that plays a crucial role in immune response, and that T cell counts were negatively correlated with case severity.

Interestingly, they also found a high concentration of cytokines, a protein that normally helps fight off infection. Too many cytokines can trigger an excessive inflammatory response known as a cytokine storm, which causes the proteins to attack healthy cells. The study suggests that coronavirus does not attack T cells directly, but rather triggers the cytokine release, which then drives the depletion and exhaustion of T cells.

The findings offer clues on how to target treatment for COVID-19, which has become a worldwide pandemic and a widespread threat to human health in the past few months. “We should pay more attention to T cell counts and their function, rather than respiratory function of patients,” says author Dr. Yongwen Chen of Third Military Medical University in China, adding that “more urgent, early intervention may be required in patients with low T lymphocyte counts.”

Chen says he and his co-authors became interested in examining T cells when they noticed that many of the patients they treated for COVID-19 had abnormally low numbers of lymphocytes, a type of white blood cell that includes T cells. “Considering T cells’ central role of response against viral infections, especially in the early stage when antibodies are not boosted yet, we took the T cells as our focal point,” says Chen.

Authors examined 522 patients with coronavirus along with 40 healthy controls. All patients studied were admitted to two hospitals in Wuhan, China between December 2019 and January 2020, and ages ranged between 5 days and 97 years old. Of the 499 patients who had their lymphocytes recorded, 76% had significantly low total T cell counts. ICU patients had significantly lower T cell counts compared with non-ICU cases, and patients over the age of 60 had the lowest number of T cells.

Importantly, the T cells that did survive were exhausted and could not function at full capacity. Not only does this have implications for COVID-19 patient outcomes, but T cell exhaustion leaves patients more vulnerable to secondary infection and calls for scrupulous care.

Chen says that future research should focus on finding finer subpopulations of T cells in order to discover their vulnerability and effect in disease, along with identifying drugs that recover T cell numbers and boost function.

Authors say that Tocilizumab is an existing drug that may be effective, but that it needs to be investigated in the context of coronavirus. Antiviral treatments, such as Remdesivir, may also prevent the progression of T cell exhaustion, but all future treatments will require further study.

In the meantime, this new research deepens our understanding of how the novel coronavirus affects the body and it indicates ways to lessen its impact.

###

Notes to Editors

Please link to the original research article in your reporting: https://www.frontiersin.org/articles/10.3389/fimmu.2020.00827/full

Corresponding author: Dr. Yongwen Chen

Email: yongwench@163.com

Corresponding Author’s Institution: Third Military Medical University, China

Frontiers is an award-winning Open Science platform and leading Open Access scholarly publisher. Our mission is to make research results openly available to the world, thereby accelerating scientific and technological innovation, societal progress and economic growth. We empower scientists with innovative Open Science solutions that radically improve how science is published, evaluated and disseminated to researchers, innovators and the public. Access to research results and data is open, free and customized through Internet Technology, thereby enabling rapid solutions to the critical challenges we face as humanity. For more information, visit http://www.frontiersin.org and follow @Frontiersin on Twitter.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.



Source link

LEAVE A REPLY

Please enter your comment!
Please enter your name here